Charge to Workshop Participants
Tsengdar Lee
July 29, 2008
NASA science requires major advances in computational technology

- NASA’s unique driver is the data

Achievement of the prediction goals will require coordinated investments in science advancement and computational technologies

- Key stressing science applications are already identified
- Data management, application throughput, and problem solving environments are common across disciplines
- Science applications will build upon industry best practices, standards, and commercial offerings - But industry will not provide key technologies required to enable the stressing applications
- Coordinated investment in these identified technologies will benefit all the disciplines

Continued, focused investment in a science driven technology development program is required for success in the ESE
Report from the Earth Science Enterprise
Computational Technology Requirements Workshop
April 30 - May 1, 2002

Weather, Climate, and Solid Earth panels defined capabilities needed to achieve NASA prediction goals in 2010
These capabilities were analyzed for stressing technology requirements

Technology Cross-Cut of Gaps Identified

A. Computing Platforms
B. Data Management
C. Programming Environment and Tools
D. Distributed Computing
E. Other Requirements
A. Computing Platform Throughput Required

<table>
<thead>
<tr>
<th>Stressing Model</th>
<th>Single Image Throughput</th>
<th>Estimated Capacity Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Day Forecast</td>
<td>20 Tflops</td>
<td>400 Tflops</td>
</tr>
<tr>
<td>Atmosphere: 10 km horizontal, 100 levels vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011 observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-I Prediction</td>
<td>5 Tflops</td>
<td>100s Tflops</td>
</tr>
<tr>
<td>Atmosphere: 25 km horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean: 6 km horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake Fault Slip</td>
<td>2 Tflops</td>
<td>10s – 100 Tflops</td>
</tr>
<tr>
<td>16M finite elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100k boundary elements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustained Throughput and Capacity Requirements

- Vendors are expected to offer 20-50 Gflops processors, platforms with 10,000 processors, plenty of memory and storage
- Gaps are in achievable applications performance
- Needs:
 - Single processor application performance at a significant fraction of peak
 - Application scalability to thousands of processors
 - I/O performance that scales with the application performance
B. Data Management Requirements

- Data volume is expected to be overwhelming and heterogeneous in format
- Model output data management is the problem

<table>
<thead>
<tr>
<th>Observational Data</th>
<th>Access Modes Rates</th>
<th>Output Data</th>
<th>Storage Term/Re-access Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather Forecast</td>
<td>1 TB/day Multiple Sources Continuous</td>
<td>Streamed input 20 GB/s</td>
<td>10 PB/day – Archival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 TB/day – external</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium – Long</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catalogued</td>
</tr>
<tr>
<td>Climate Modeling</td>
<td>10s of GB from archival sources</td>
<td>Data archive request 2 GB/s (latency tolerant)</td>
<td>100s TB/day</td>
</tr>
<tr>
<td>Solid Earth Research</td>
<td>100s of GB/day Distributed sources</td>
<td>Distributed archives – low latency access</td>
<td>1 PB/day – ingested into distributed archives</td>
</tr>
</tbody>
</table>
C. Programming/Problem Solving Environment Requirements

- Applications to become much more complex
 - No single person will understand all of the details
- New applications need to be implemented in a month instead of a year
- Performance (efficiency) must be maintained without heroic efforts
- Ensemble executions, distributed application executions must be transparently manageable

- No discipline specific vendor offerings expected in this area
- Needs:
 - Application frameworks/composable component architectures
 - Platform independent program design and execution environment
 - Highly efficient applications that scale to 1,000s of processors without heroic effort
D. Distributed Computing Requirement

- Integration of geographically distributed data servers, computing assets, and users will be the norm
- Assets need to be unified in a seamless environment for maximum productivity
- Transparent, reliable data transport layer for interservice communication is required
- *Unpredictable vendor offerings in this area in 2010*
- Currently, there is a multi-agency investment (NSF, DOE, NASA) in this area (GRID computing)
- Needs:
 - Uniform, seamless, transparent access and programming environment

E. Other Requirements

- Scalable, efficient, reusable implementations of common algorithms
- Real time visualization of Terabytes of data
- Scalable data mining applications
- Computing platform systems management
Charge to the Workshop Participants

In the context of NASA data driven scientific research and analysis:

- What are the Key stressing science drivers?
- What are the computing cycle, storage, and networking needs?
- What are the data management, application throughput, and problem solving environments needs?
- Is there any specialized human capital investment required?
- Science applications will build upon industry best practices, standards, and commercial offerings - But industry will not provide key technologies required to enable the stressing applications. What do you think we can do to mitigate the risks?
- How do we best coordinate investment in these identified technologies to benefit all the disciplines?
- Other recommendations?